Data Analytics: como garantir decisões assertivas a partir de dados do CRM e fora dele

Por Alex Aparecido*

Empresas de todo o mundo vêm enfrentando um desafio em comum: a análise de dados. Com uma gama enorme de informações geradas por diversas fontes, em meio a um cenário de mercado cada vez mais competitivo e com mudanças constantes, unificá-las e harmonizá-las nunca foi tão importante para o sucesso dos negócios e para a adoção da Inteligência Artificial (IA).

Nesse sentido, o Data Analytics desempenha um papel fundamental na transformação de informações brutas em insights acionáveis, permitindo que empresas de todos os setores desenvolvam soluções robustas e eficazes. No entanto, é imprescindível estar atento às tendências, para otimizar os ganhos com uma análise de dados assertiva.

Para se ter uma ideia, segundo o Gartner, 61% das empresas estão sendo obrigadas a evoluir ou repensar seu modelo operacional de Data & Analytics (D&A) devido ao impacto das disruptivas tecnologias de IA. Tendo em vista este cenário, uma alternativa é explorar estrategicamente os dados provenientes de sistemas de CRM (Customer Relationship Management) e outros legados, além de também aqueles externos ao CRM, para potencializar o desempenho organizacional.

A jornada para uma gestão eficaz

Antes de nos debruçarmos às tecnologias para análise dentro e fora do CRM, é importante destacar que tudo começa pelo desenvolvimento de uma estratégia de dados. Ela tem por objetivo entender quais informações são relevantes no apoio à tomada de decisão da organização, bem como esse dado pode se transformar em conhecimento para direcionar estratégias assertivas a diferentes áreas do negócio.

Para empresas pouco maduras, a jornada inicia com a estruturação dos dados, a fim de garantir que tudo o que for relevante seja capturado de maneira consistente e armazenado de forma organizada. Outras empresas, mais avançadas tecnologicamente, já têm uma base estruturada, porém, muitas vezes enfrentam o desafio de como lidar com tamanha quantidade de informações, a fim de extrair os melhores insights.

Nesse caso, primeiramente é necessário olhar para a limpeza e a qualidade dos dados, que caso estejam imprecisos ou duplicados podem levar a análises equivocadas. Para tanto, ferramentas avançadas podem automatizar grande parte desse processo. Conceitos de arquitetura como Data Lakehouse ou Datamesh, por exemplo, garantem um ambiente gerenciado, deixando na base a única fonte da verdade, com dados íntegros e certificados. Isso mitiga o tempo de tratamento das informações, permitindo que os colaboradores reduzam o esforço operacional para se concentrarem em atividades mais estratégicas.

A parte final dessa jornada é a análise por meio de relatórios detalhados, cujo processo tem ganhado ainda mais valor com o desenvolvimento da Inteligência Artificial, capaz de analisar e correlacionar dados a fim de gerar insights importantes para as tomadas de decisões e predições do que pode ocorrer. Seja ajustando campanhas de marketing, melhorando o atendimento ao cliente ou otimizando operações internas, as decisões baseadas em dados tendem a ser mais eficazes e alinhadas aos objetivos de negócio, trazendo uma experiência personalizada ao cliente.

De onde coletar as informações?

Como mencionado anteriormente, combinar dados internos do CRM a fontes externas pode ser muito estratégico, pois é possível ter acesso a uma visão holística do comportamento e das necessidades dos clientes.

O mercado conta com soluções analíticas integradas ao CRM otimizadas para trabalhar com os dados diretamente gerados pelas interações com os clientes. Elas entregam uma perspectiva detalhada e específica do comportamento do consumidor, permitindo um entendimento profundo de suas preferências e necessidades individuais. Isso resulta em ações mais direcionadas e personalizadas, aumentando índices de satisfação e fidelização.

Por outro lado, ferramentas de análise que operam fora do CRM proporcionam uma visão macro, integrando múltiplas fontes de dados – como redes sociais, pesquisas de mercado, comportamentos de navegação na Internet, entre outras – para oferecer uma perspectiva mais ampla. Elas são ideais para identificar tendências de mercado, analisar o comportamento geral do consumidor e avaliar o impacto de fatores externos sobre os negócios. A flexibilidade dessas ferramentas, por sua vez, permite a criação de dashboards completos capazes de compreender, em uma visão 360º, diferentes cenários de interesse para os negócios.

A importância do suporte especializado

Navegar pelo complexo universo do Data Analytics requer expertise. Com a tecnologia, as empresas evoluem cada vez mais rapidamente e o processo de se adaptar à organização e ao cruzamento de dados é um desafio constante.

A partir disso, contar com uma consultoria pode ser o diferencial entre uma estratégia bem-sucedida e um esforço em vão. Isso porque, empresas especializadas oferecem não apenas as soluções adequadas, mas também a experiência necessária para implementar as melhores práticas de coleta, integração e análise, o que pode reduzir custos e prazo de projetos em até 60%.

Em um mundo cada vez mais orientado por dados, a capacidade de geri-los e analisá-los de forma eficaz é essencial para o sucesso empresarial e diferenciação competitiva. De agora em diante, os gestores devem estar cada vez mais atentos à governança interna, ao mesmo tempo que buscam melhorar a qualidade dos dados externos. Assim, é possível garantir que a organização extraia o máximo valor das informações disponíveis, transformando-as em insights estratégicos que impulsionam o crescimento e alimentam a IA.

*Alex Aparecido é Head Delivery and Operations na Everymind, líder e referência em implementações Salesforce, com mais de 20 anos de experiência em dados.

Compartilhe este artigo
Bacharel em Comunicação Social, com habilitação em Jornalismo. Atuo no mercado de comunicação desde 2018, com passagens no setor público e privado, nas áreas de social media, jornalismo esportivo e assessoria de imprensa de Marcas e Pessoas (atletas e artistas).